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ABSTRACT

This report is a brief handbook on the comparative descriptive statistics of a wide variety of skewed
probability distributions, both continuous and discrete. The aim is to facilitate the comparison of differ-
ent distributions, for use where random variables are employed without any firm information on their
distribution. In this situation, it is of interest to look for sensitivity to the distribution chosen. This can
best be done by running the model with a variety of distributions, which then raises the question of
how to compare distributions. This work advocates the use of moments and presents the requisite
equations. As obvious as this approach may appear, many of the equations do not seem to have been
published previously and some of the results are apparently wholly new. A total of 18 distributions are
treated in detail, including all of the most commonly used skewed probability distributions.
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Comparative Descriptive Statistics of
Skewed Probability Distributions

Executive Summary

This Report addresses a technical issue in the current practice of operational analysis
(OA). Increasingly, OA studies involve simulations of varying levels of sophistication.
A feature of all simulations is the use of random variables, and this immediately raises
the question of what distribution to employ. Should the random variable be taken as
uniformly distributed over some range, or should it follow a bell curve with some
mean and standard deviation, or be exponentially distributed, and so on? Sometimes
there are methodological or theoretical arguments favouring a particular distribution,
but often there are not. In their absence, the modeller is forced to make a more-or-less
arbitrary choice of distribution, motivated perhaps by ease of use or personal familiar-
ity. It then becomes interesting to know how sensitive the results of the analysis are to
the choice of distribution: if another had been chosen, would the conclusions have been
different?

The obvious way of approaching this question is to run the model using a variety
of distributions. One must not, however, substitute one distribution for another uncri-
tically. For example, usually the results of a model will be affected by the mean of an
input variable, so one must match means when changing distributions. However, most
common distributions have two parameters, so the requirement of matching means is
not in itself sufficient. This Report advocates matching distribution moments: for two-
parameter distributions, one should match means and standard deviations; with three
parameters, the skewness should also be matched, and so on. As obvious as this ap-
proach may seem, the requisite equations have not been encountered in any of the texts
on probability distributions examined for this work.

Hence, this Report gathers together equations for distribution parameters corres-
ponding to a given mean, standard deviation and, where required, higher moments of
a wide range of skewed probability distributions. Most of the equations were derived
during the course of this work; many appear not to have been published before. All of
the common skewed distributions are treated in detail, including
e 3 one-parameter distributions
e 11 two-parameter distributions
2 three-parameter distributions
1 four-parameter distribution
9 continuous distributions with the range zero to infinity
3 continuous distributions with a finite range (a to b)

3 discrete distributions with a finite range (a to b).
In addition, 11 lesser-known discrete distributions with finite ranges are mentioned, to
give a flavour of the diversity available.

The emphasis on finite-range and semi-infinite (0 — ) skewed distributions
arose from the original motivation for this work, which was to support the modelling
of decision times and times to carry out a given task. There is no obvious interpretation
for a negative decision time, so it is natural to use distributions that are positive defi-
nite when modelling such quantities. However, the Gaussian distribution (defined
from ~oo to o) is also included because it is so widely known and used.
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1. Introduction

In many, perhaps most, studies using random variates, the question of which distribu-
tion to use is not a significant issue: theoretical or methodological arguments point to
the right one for the purpose. The issue of comparison between distributions does not
then arise. In some cases, however, there is no clearly preferred probability distribu-
tion; the choice is more or less arbitrary and this raises the question of the sensitivity of
the analysis to that choice. In these circumstances it is important to have a rational
basis for comparing distributions, so that one is comparing like with like as far as
practicable. The method advocated in this report is to match moments of distributions:
where distributions have a single parameter, this is chosen to equate means; for two-
parameter distributions, means and standard deviations are matched, and so on. This
seems an entirely obvious approach, yet it is not mentioned in any of the many refer-
ences examined in the course of this work. As a consequence, the requisite equations
are not compiled anywhere, so this work was carried out to fill the gap. Some of the
results presented herein are available in texts; most are not. For example, nothing like
Figures 2.5 or 3.4-3.6 has been encountered in the literature.

Most of the distributions considered in this report have two parameters. Equa-
tions were derived and are presented herein for parameter values that give a desired
mean and standard deviation. The differences between distributions are then quanti-
fied by skewness n3 and kurtosis 14, which are respectively the third and fourth mo-
ments about the mean divided by the third and fourth powers of the standard devia-
tion. Expressions for skewness and kurtosis in terms of mean and standard deviation
are presented where possible. Often, the expressions are more or less straightforward
re-arrangements of standard results, but in somé cases the equations have no closed-
form solution; for these, graphs and tables are presented that assist in the choice of
parameters.

In addition to the two-parameter distributions, three one-parameter, two three-
parameter and one four-parameter distributions are included. For these, equations are
presented giving the parameters in terms of as many moments as required.

The focus on skewed distributions arose from the original motivation for this
work, which was to support a study on modelling decision making [1]. The time taken
to make a decision has a natural definition for positive values only; hence, distributions
of decision time ought to be strictly zero for t < 0. Further, it has been argued that the
likelihood of an instantaneous decision is negligible, so the distribution of decision
times ought to be zero at t = 0 as well. Most distributions treated herein have these
characteristics; the two exceptions (Gaussian and exponential) are included because
they are so widely used. Recently, the results reported herein have been applied to a
study of service times in a queueing-theory model of maritime interception [2]. This is
another case where one requires the distribution to be zero for ¢ <0.
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This work was prompted by studies from the Naval Undersea Warfare Center
Division Newport advocating the use of the inverse Gaussian probability density as a
representation for decision times [3,4]. This distribution is not widely known and is
omitted from several well known texts (e.g. [5-8]) although it was first described over
half a century ago [9] and its properties have been documented for several decades [10
(ch.15),11]. In §2 of this report, its properties are compared with those of many other
probability-density distributions. The emphasis naturally falls on other distributions
on [0,), although the Gaussian distribution is also included because it is so ubiquitous
and to provide a point of comparison with a non-skewed distribution.

The property that makes the inverse Gaussian distribution particularly suited to
the description of decision speed, the behaviour of the ‘decision rate’ or ‘hazard rate” at
long times, is highlighted in §2.3.4.

As well as speed, decisions are characterised by soundness [1]. Although perhaps
not essential, it is common for soundness scales to be finite: 0-1 say, or 0-10. The mo-
delling of soundness is just as likely to be probabilistic as that of decision speed, so
finite-range distributions are described in §3. Often, soundness is ranked on a discrete
scale, 0-3, 1-5 etc., the so-called “Likert scales’. This is also amenable to a probabilistic
treatment; appropriate probability distributions are described in §3.3.

This work serves as a brief handbook on the comparative descriptive statistics of
a wide variety of skewed probability distributions, both continuous and discrete. The
aim is to facilitate the comparison of different distributions.

2. Semi-Infinite Distributions

As mentioned in §1, the inverse Gaussian probability density has been advocated for
representing decision speed. The basic properties expected of a distribution of decision
speeds are as follows:

¢ The domain of the distribution must not include negative times £.

e The probability density should be zero at t = 0; for otherwise there is a non-zero
probability of an instantaneous decision. In particular, the exponential distribution,
which has maximum probability density at f =0, is not suitable.

¢ Whether the domain of the probability density should extend to infinity is not clear,
but there are as yet no data establishing an upper limit on decision time. Thus, the
domain of the distribution should be 0 < t < «, so as to avoid introducing an arbi-
trary parameter. ‘

The inverse Gaussian probability distribution, among others, fulfils these criteria. This

section presents the main properties of this distribution and compares it with other

distributions also satisfying the properties listed above. The feature distinguishing the
inverse Gaussian probability density from the rest—the behaviour of its decision rate—

is addressed in §2.34.

2.1 The Inverse Gaussian Distribution
In standard form, the definition of the inverse Gaussian probability density is [10-12]

[A { AE-p )1, 1)

7y
fel)=y5 3 &P "o,
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where the parameters A, p must both be greater than zero. As noted above, the domain
is 0 <t < o0. By direct calculation, it is found that the mean of the distribution is p and
its variance o2 equals p3/A. Since the function has two parameters, we re-write it using
the mean p and standard deviation ¢ as parameters. This is straightforward and has
the added advantage that a little rearrangement simplifies the argument of the expo-

nential function:
2
’ 2 vo(t
fiG (t) = 2:t3 Vev eXp I:—;(; + %):| P (2.2)
where v=yp/c.

Figure 2.1 shows plots of the distribution for three values of o/u. As Equation
(2.2) indicates, the argument of the distribution scales with p, so it is useful to plot
Figure 2.1 with £/p on the abscissa. Scaling is made complete by plotting the product
nfig(t) and labelling the curves with the ‘coefficient of variation” s = 6/p =1/v.

As may be expected, and as Figure 2.1 shows, the inverse Gaussian distribution
becomes more symmetric as 6/u — 0 and more skewed as 6/ — . The mode ¢, (for-
mula in Table 2.1 below) lies between zero and the mean p for all values of o/p, with
tm — 0 as o/pu —> oo. The probability density f,(t,,) at the mode rises as either 6/p — 0
or 6/ — . The minimum value of p fi(t,) occurs when o/p = 1/\2 ~ 0.7071. (This
does not depend upon p.)

As mentioned in §1, the method of comparing the various distributions is to ex-
amine functions with the same values of u and o; differences are then be expressed in
terms of the higher-moment ratios, skewness 13 and kurtosis 1. Of course, yet higher
moments exist, but nz and ny are usually sufficient to display trends. For the inverse
Gaussian distribution, direct evaluation of the integrals concerned gives simple expres-
sions for 1, and ny;g in terms of p and c:

N3iG =3yp/A =30/n

NaiG =3 +15p/% =3+15(c/p)?.

2.3)

T T T T T i
L 14 oly= a
L] 0.3 -
Sawll 0.6 -
..9 o
3 | _
S -
o
L 0.6 -
14
o ! | 1 I
0 1.0 20 3.0
i

Figure 2.1: Examples of the inverse Gaussian distribution. Curves are labelled by values of the
coefficient of variation /.
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2.2 Other Distributions

This section discusses the properties of the Gaussian distribution and eight semi-infi-
nite distributions: exponential, log-normal, gamma, bi-exponential, Weibull, log-logis-
tic, inverted gamma and beta-prime. The list comprises all the best known distributions
on [0,:), including all those listed in a widely used text on simulation [7(pp. 299-318)].
The Gaussian and exponential distributions are not realistic candidates for describing
decision speed, but are included because they are so common. The Gaussian also pro-
vides a point of reference to a non-skewed distribution.

In the following Section, the distributions are compared using the mean p and
standard deviation ¢ as the parameters, as in Equation (2.2). Hence, the aim of this
Section is to invert the expressions for p and o in terms of the standard parameters.
This can be done in closed form in all but two cases (Weibull and log-logistic). For
these two, graphs and tables are presented to facilitate the transformation. Details of
the inversion are presented in the following subsections. For convenience, expressions
for the main properties of the distributions are collected in Table 2.1 (pp. 6-7).

221 Gaussian Distribution

The standard form of the Gaussian distribution afready uses the mean p and standard
deviation ¢ as parameters:

82
fa(t)=— exp[ (;G;“‘) } 24)

22.2 Exponential Distribution

This distribution has just one parameter, the mean p, which must be positive. The stan-
dard form is

folt)= }-exp(;f) 0<t<c). 25)
B H

The standard deviation of this distribution equals p also.

223 Log-Normal Distribution

The standard form of the log-normal distribution is often written using the symbols p

and o to represent the mean and standard deviation of a notional underlying Gaussian

distribution (e.g. [6,7,12,13]), rather than of the log-normal distribution itself. This con-

fusing notation can be simply avoided by adopting other symbols. For example, Olkin

et al. [5] write

~(Int-¢)*
282

where §, £ are the parameters, both of which must be positive. The mean p and stand-

ard deviation o of the log-normal distribution are given by

n=exp(£+82/2), o=exp(t+8%/2) Jexp(52)-1. @.7)

These equations can be inverted, leading to the following expression for the distribu-
tion in terms of p, :

fin(t)= ; \/;:52 exp{ } (0<t<) (2.6)
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finl®) 1 exp In? (t\/sz +1/u) 28)
In(t)=—=————=exp| - ’ :
" W2ain(s? +1) 2In(s* +1)
where s = 6/, the inverse of v.
224 Gamma Distribution
In standard form, the gamma distribution reads [5]
r
frf) =1 (0<i<aw) 2.9)

I(r)

where the parameters 7, 6 must both be positive. I'(x) is the usual gamma function [8

(86.1.1)]. The equations for the mean u and standard deviation ¢ in terms of the para-
meters,

p=r/0, o2=r/62 (2.10)
are easily inverted, so the distribution can be rewritten using these as parameters:
2
v 2
fr0 =g e -2 (211)
c' T(v?) e

where v = n /o, as for the inverse Gaussian distribution.

To obtain fi-(0) = 0, as required, one must take r > 1. This implies p/c > 1. That is,
it is not possible to have the standard deviation larger than the mean and still retain
fr(0) = 0. This is in contrast to the behaviour of the inverse Gaussian and log-normal
distributions.

2.25 Bi-exponential Distribution

As noted above, the exponential distribution is not suitable for representing decision
speed because its maximum value lies at ¢ = 0. This defect can be rectified by a simple
generalisation:

foolt)= B—“;%(e—“f —e ) (s<t<w) (212)

where the two parameters o, § must be non-equal and both positive, and one can take
B > o without loss of generality. This is known as the bi-exponential distribution, also
as the two-stage hypo-exponential or generalised Erlang distribution [14(p.448)]. Al-
though this distribution has a simple form, expressions for the mean and standard
deviation in terms of the parameters are rather more complicated than for the distribu-
tions treated so far:

2 a2
_o*B o= N +B” (2.13)
op of
Equations (2.13) can be inverted:
2/p 2/u
a=—w-tE p=—otb (2.14)
14252 -1 1-2s% -1

(s = o/u, as before), but is not expedient to substitute these equations into Equation
(2.12). However, relatively simple expressions can be obtained for the mode, skewness
and kurtosis in terms of s, as shown in Table 2.1.
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Table 2.1 continued (see previous page for footnotes).

Log-logistic Inverted gamma Beta primeA
o-1 s2+1 p-1
Mode ¢t Y T
" o M3 41 g+1
‘ 4s
Skewness 113 Eqn (2.24) 1.2 (a parameter)
-s
3(1+75%)
Kurtosis 1 Eqgn (2.25 —— Eqn (2.3
¢ tne® G- 2) an &)
Behaviour  / Eg)_a‘ﬁddi;fifff £(0) and all its deriva- f g)_aﬂ‘yetfifg_st
att=0 tives are zerot tives are zero tives are zero
> I
24 w1 2 V2 i) q ,p-1 v
Deciision af?* 1% [u(v + 1)] e2 . Tt .
ratet h(t o, qa)3 2 vo+ t+ )P B( _)
(t) (t +B ) y(v +2,u ; ) (t+7) q,p,tH
h(oo)k 0 0 P

Equations (2.14) imply that 1/¥2 < 6/p < 1, so that o and P are real and positive.
Hence, as with the gamma distribution, the range of standard deviations that can be
obtained for a given mean is restricted; the range available with the bi-exponential
distribution is particularly small, as illustrated in Figure 2.5 below (p. 14).

2.2.6 Weibull Distribution
The standard form of the Weibull distribution is [5]

fu®=Eeb 1wl 0<t<n) (2.15)
(04

where the parameters o, B are both positive and B > 1 is required to obtain fiy(0) = 0.(2)
As with other distributions, expressions for the mean and standard deviation in terms
of the parameters can be obtained, but in this case they cannot be inverted in closed
form. The expressions are:

uzal"(1+%], c=a\/l“(1+§]-—l"2(l+%). (2.16)

Since we consider only B > 1 and since I'(x) < 1 in the range 1 < x < 2, with a minimum
atT'(1.46163) = 0.885603 [8(p.259)], it follows that 0.8856a < p < a.. That is, the mean lies
within 12% of the value of a.

It is clear from Equations (2.16) that the ratio s = 6/p depends on B alone. Using
the recurrence and duplication formulae for the gamma function [8(p.256)], one obtains

2Bp(1,1
$2 {32 _}% -1. (217)

(3) Note that o and B are often interchanged, e.g. [6,7].
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From this and the properties of I'(x), one sees that s >0 asp —>oands—>1asp— 1.
That is, as with the gamma and bi-exponential distributions, it is not possible to obtain
¢ > p while retaining the desired behaviour near t = 0.

Expressions similar to Equations (2.16) for skewness 13 and kurtosis 14 read:

r‘(z +-§] -31“(1 +§) I‘[l +%) + 32/1;3 (1 %} | 219
(3 03)
F(i+%)—4f‘[i+§}l"(l+§)+6F(1+§)I‘2(}+%)—3F4[}+%)‘ o
(o3 (3)]
p B

There seems little useful that can be done to reduce these equations further. It can be
seen from these equations and those in Table 2.1 that a acts purely as a scaling para-
meter.

Figure 2.2 shows plots of properties of the Weibull distribution as a function of
the shape parameter B. The practical value of this figure lies in its facilitation of the
inversion of Equations (2.16) to obtain  for given values of 6/, a necessary step in the
comparison process. Figure 2.2 shows that 1/ = 6/, but that o/ p slightly exceeds 1/
except at zero and unity. Table 2.2 lists values of 1/B to six decimal places, obtained by
numerical inversion of Equation (2.17), for selected values of /.
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Figure 2.2: Various properties of the Weibull distribution as a function of the parameter B for
the case B > 1. The curves show the ratios t,,/a, p/o and ofp, where t,, is the mode, p the mean
and o the standard deviation, and values of the skewness 13 and kurtosis 14 The skewness and
kurtosis have been scaled by their respective values at o. = 1 to give convenient ranges of values

for plotting.
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Table 2.2: Values of 1/ to 6 decimal places for various values of c/p.

o/p 1/ o/p__1/B o/pw _1/B o/u___1/B

0.05 0.040081 0.30 0.269268 0.50 0.475885 0.75 0.742087
0.10 0.082281 1/3 0302707 0.55 0.529030 0.80 0.794755
0.15 0.126471 035 0.319612 0.60 0.582383 0.85 0.846958
0.20 0.172491 040 0.370972 0.65 0.635775 0.90 0.898612
0.25 0.220157 0.45 0423133 0.70  0.689055 0.95 0.949645

2.2.7 Log-Logistic Distribution

The logistic distribution has a sech? t form, which has obvious similarities with the
Gaussian distribution. The analogy suggests the definition of the log-logistic distribu-
tion: it has the same relationship to the logistic distribution as the log-normal has to the
Gaussian [10(§23.11)]. The standard form of the density function is [7]

ta—l

2
(t +p%)
where, for the general distribution, the parameters o, B are both positive. However, as
with several other distributions, the requirement that f};(0) = 0 imposes an additional
restriction on one of the parameters. In this case, one must have a. > 1.

Yet further restrictions on o are placed by requirements that the moments of the
distribution be finite. The rth moment p, about the origin is given by

fir(t)=ap® 0<t<w), (2.20)

w=p [ 2 gy, @21)
0 (1"‘.‘/)2

an integral that is infinite unless o > r. Hence, a finite standard deviation requires o, >
2, a finite skewness a > 3, and so on. Since we plan to compare log-logistic with other
distributions by specifying values of mean and standard deviation, it follows that we
are interested only in those distributions with o > 2.

Equation (2.21) is a standard integral [15(§856.07)]; its evaluation for r =1, 2 leads
to the mean and variance:

nf | 2 nBz [

| =—-cosec—, - =—"—

2 c:ose<:2—7t ~Z cosec? —E] . (2.22)
a o a

a o [0

As with the Weibull distribution, these equations cannot be inverted in closed form.
The value of a. is the solution to the equation

s=2=,/ﬁtan1‘-—1; (2.23)
n T oa

this is shown in Figure 2.3 as the curve labelled ‘c/’. Values of a. for selected values of
o/ p are listed in Table 2.3.

Expressions for the skewness and kurtosis are obtained from Equation (2.21) for
the appropriate values of r. Simplified as far as seems useful, the results are

2
3(s2+1)° 35241
s3 [4 —sec? (n/a)] s

311 = , (2.24)




DSTO-TR-1596

o
50 10 5 4 3 2
mirTrrr o v T 17T
T T T T T T T ]
o .
) S ! A
/ !
— o / 4
- / 1
o
<[ N3/ H
/
/
— / olp/
/'/ /
Sy 7 /
i _M
LS T T == - “‘i~- _
P '—’// —
okl — T + v v | fm;g i
0 05 1.0 1.5

o

Figure 2.3: Various properties of the log-logistic distribution as a function of the parameter o
for the case o. > 2. The curves show the ratios t,,/B, n/B and o/, where t,, is the mode, p the
mean and o the standard deviation, and values of the skewness n3 and kurtosis n4.

Table 2.3: Values of o to six significant figures for various values of o/j.

o/ @ o/p o o/u« o/pa s/p o

005 363304 030 636448 070 326802 110 258774 3.0 2.08824
010 182465  1/3 579329 075 313310 120 250287 4.0 2.05007
015 122542 040 495149  0.80 3.01822 140 237947 50 2.03218
020 928422 050 413744 090 283440 160 229595 6.0 2.02240
025 752257 060 361953  1.00 269535 200 219380  10.0 2.00809

2+1°  12(:2+1)° 65743
s*[2-sec?(n/a)] s%[4-sec?(nja)] st

N4t = (2.25)

These are also plotted in Figure 2.3. As this Figure shows, the higher moments of the
log-logistic distribution are rather large compared with distributions considered so far.
Equations (2.23)-(2.25) also show that the parameter p is simply a scaling parameter.

Figure 2.3 indicates that the full range of values of 6/ are accessible only if infi-
nite higher moments are tolerated. If one wishes to consider only distributions with
finite skewness or kurtosis, then this introduces an upper limit on 6/p: 6/p < 0.80869
for finite skewness and ¢/ p < 0.52272 for finite kurtosis.

228 Inverted Gamma Distribution

The inverted gamma distribution is the distribution of a random variate whose recipro-
cal is gamma-distributed. The standard form of the distribution is [12(§18.4)]
lC

A
fi_r (f} = W exp (T) (0 i< OO), (2.26)
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where the parameters A, c must both be positive. Law and Kelton refer to this distribu-
tion as “the’ Pearson type V distribution [7], but it is actually just one example of this
class of distributions [10(§12.4),16(ch.4)].

For this distribution, the requirement f; (0) = 0 imposes no additional constraint
on the parameters; however constraints arise when moments are calculated: for the rth
moment to be finite, one requires c > r, as with the parameter o of the log-logistic dis-
tribution. Expressions are much simpler in the case of the inverted gamma distribution,
so that closed-form expressions can be obtained with p, c as parameters. The transfor-
mation is

A=p(v2+1), c=v2+2, (2.27)

where v = /o, the reciprocal of the coefficient of variation. The fesulting expressions
for mode, skewness and kurtosis are listed in Table 2.1 (p. 7). The probability density is

_ [u(v2 +1)]vz+2 vZ +1
-t o) e

As with the log-logistic distribution, the whole range of values of o/p is access-
ible provided that infinite higher moments are tolerated. If one wishes to consider only
distributions with finite higher moments, then one requires 6/p < 1 to keep the skew-
ness finite and o/ < 1/42 to keep the kurtosis finite.

2.2.9 Beta-Prime or Generalised F Distribution

The B’ distribution is derived from the p distribution (§3.2 below) by a transformation
of the argument. It is the only three-parameter distribution on [0,:0) considered in this
report. The standard form is [7,10(§25.7,§27.8.1)](®)

1 tp~1
B(p.q) (t+7)P*1

where all three parameters p, g, T must be positive and B(p, g) is the standard beta func-
tion [8(86.2)]:

fp(t)= 0<t<o), (2.29)

B(p.q) -Z(p)tg), (2.30)
I'(p+q)
The requirement f3,(0) = 0 imposes the constraint p >1; further constraints arise from
the moments: a finite rth moment is obtained only if g > r. Equation (2.29) is a gener-
alisation of the much studied F distribution of variance ratios [10(ch.27)].()
With three free parameters, one can specify the skewness as well as mean and

standard deviation. An expression for the rth moment p, about the origin can be readi-
ly derived:

_ o prr-1)i(g-r-1)
(p-1)i(g-1)!

Working from this, the formulae for the three moments in terms of the parameters are:

Ky (2.31)

(b) As with the inverted gamma distribution, Law and Kelton [7] misname this distribution,
calling it “the’ Pearson type VI distribution, whereas it is but one example of the class [10
(§12.4,827.7),16(ch.4)]. Johnson et al. [10(p.345)] present equations for the inversion of a 4-
parameter generalisation of this distribution.

(¢) The F distribution is obtained by setting T = q/p, i.e. it has two parameters only.

11
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12

2 _ ‘
n=—t_, P=TPPTI7]) p(p;" DN 2.32)
q-1 (9-1)"(9-2)
2p+gq-1
ny=2-219"—, (2.33)
sp(q-3)

where s = 6/, as before. Equation (2.33) is independent of the parameter 1, and so is
identical to the expression for the skewness of the F distribution, since the F distribu-
tion differs from the B’ distribution only in its T values. Equations (2.32) yield a simple
result for s:

=Pl 234
p(7-2) @39
Recalling that this expression assumes g > 2 and that we are also taking p >1, we see
that Equation (2.34) implies 0 < o/p < oo; that is, the full range of s values is available.
However, the inclusion of Equation (2.33) implies a further restriction of the range of g
to g >3, which then restricts the range of 6/ to 0 < 6/ < V3. The same argument ap-
plied to Equation (2.33) shows that n3 must be positive; that is, negative skewness is

not accessible for this distribution.
Equations (2.32) and (2.33) are sufficiently simple for the inversion to be relative-

ly straightforward:

‘ 2 2
14313 -5 ) g=3+2 57 +1

p:z 27

2.35
$°n3 —sm3 + 452 snz —2s (239)

with t being calculable from the expression for p once p and g are known. The require-
ments p > 1, ¢ > 3 put restrictions on values of 13 that may be validly chosen:

2 —
- >max[2s, 2‘2—_;33} (2.36)

This analysis leaves the kurtosis 14 as the first moment available for comparison
with other distributions. Derivation shows that the expression for 1y is also indepen-
dent of the parameter t and so is the same expression as for the F distribution; that is

59-11 (9-1)°(@-2)
6 +6 (2.37)
(a-3)(g-4) p(p+9-1)(9-3)(7-4)
where it is assumed that g > 4. (The kurtosis is infinite for g < 4.) This further restriction
on g carries with it the implications
0<s<\2, N3 <4s+2/s. (2.38)

g =3+

2.3 Comparisons and Comments

23.1 General Distribution Properties

Table 2.1 (pp. 6-7) comprises a comparison of sorts between the distributions. This
Section makes a more graphic comparison through plots of the distributions and their
properties. From these plots and Table 2.1, several specific points of comparison are
noted.

Figure 2.4 shows examples of distributions with the same mean and standard
deviation. Comparison between the distributions is made through three properties: the
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(b) o/n=10.90

probability density

inverse Gaussian
log-normal
gamma
bi-exponential
Weibull
log-logistic
inverted gamma
beta prime
Gaussian

Figure 2.4: Examples of nine continuous distributions with mean p of 1.0 and standard devia-
tion o of (@) 0.50, (b) 0.90 and (c) 1.50. The bi-exponential distribution is omitted from panel
(a) because it cannot have this combination of mean and standard deviation (§2.2.5); several
distributions are omitted from panel (c) for the same reason. The skewness values chosen for the
B ’distribution are (a,b) 2.0, (c) 12.0.

ratio £,/ p of mode to mean, the skewness n3 and the kurtosis n,; values of these quan-
tities are listed in Table 2.4. In view of their importance, Figure 2.5 compares these pro-
perties in a consistent manner by plotting their values as a function of o/p.(d The p’
distribution is different from the others in having a third parameter, which is taken in
§2.2.9 as being given by the skewness. The range of valid skewness values and corres-
ponding ranges of t,,/p and n4 are shown as shaded areas in Figure 2.5.

Figure 2.4 indicates the extent to which the distributions resemble one another,
particularly at low /. As Figure 2.5 shows, the properties of all except the Weibull,
log-logistic and B’ distributions approach those of the Gaussian as ¢/u — 0. However,
the following points of contrast and difference are noted:

* The inverse Gaussian, log-normal and log-logistic distributions have quite similar
behaviour near ¢ = 0 (Fig. 2.4). Compared with these, the inverted gamma distribu-
tion approaches zero more quickly and all the rest less quickly as ¢t — 0.

(d) For the Weibull and log-logistic distributions, Equations (2.16) and (2.23) cannot be inverted
to obtain closed-form equations for the parameters as a function of 6/p, but it is clearly pos-
sible to construct plots of the distribution properties against o/p from the data in Figures 2.2
and 2.3.

13
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Table 2.4: Values of the ratio t,, /u of mean to mode, skewness 3 and kurtosis v, for the distri-
butions shown in Figure 2.4.% ~
c/u=05 o/u=09 o/u=15

tw/B Mg un /B Mg un tn/Bh M3 un
inverse Gaussian 0.693 150 675 0359 270 152 0145 450 368

log-normal 0716 163 804 0411 343 294 0171 787 209
gamma 0750 100 450 0190 180 79 - - -
bi-exponential - - - 0257 19 88 - - -
Weibull 0830 057 313 0121 170 72 - - -
log-logistic 0805 386 2440 0623 o o 0489 ® o
inverted gamma 0714 267 220 0528 189 <« 0419 o
beta prime 0722 2t 120 0249 2t 96 0033 12t o
Gaussian 1000 0 30 1000 0 30 1000 O 3

* A dash indicates that the value of o/p is not valid for that distribution.
T Chosen parameter value.

inverse Gaussian

. - — —  log-normal

—————— gamma

scsassassrnes bg_expgnentgai
Weibuil

— — — - log-logistic

—————— inveried gamma

—_———— Gaussian

L exponential
beta prime

<
-

AT}
0.5

"~ {a) mode relative
to mean

s=olu

Figure 2.5: Comparison of several properties of the continuous distributions: (a) ratio t,/u of
mode to mean, (b) skewness 3 and (c) kurtosis 14 are shown as a function of o/p. Note that the
gamma and Weibull distributions are limited to 0 < o/p < 1, and the bi-exponential distribution
to1/V2 <c/u<1. The exponential distribution has o/u = 1 only. The B’ distribution has three
parameters, and so its properties have a range of values for any given value of o/n. Skewness is
taken as the third parameter; the shaded region in panel (b) shows the range of n3 values satisfy-
ing Equations (2.36) and (2.38). The shaded areas in the other panels indicate the corresponding
ranges of values of t,/u and vy, although this representation does not show the detailed corres-
pondence between points in these ranges.
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* This difference in behaviour is due to the behaviour of the derivatives of the distri-
butions as t = 0. There is a clear distinction between those that have all derivatives
zero at regardless of parameter values and those for which only low-order deriva-
tives are zero (Table 2.1). Only the inverse Gaussian, log-normal and inverted gam-
ma distributions fall into the first category.

¢ In general, the inverse Gaussian distribution is less peaked and falls less quickly as
t— oo than the log-logistic and inverted gamma distributions, with the opposite
applying for all the other distributions (Fig 2.4).

¢ The Weibull distribution is unique in having regions of 6/pu where the mode lies at
larger t values than the mean, the skewness is negative and the kurtosis is less than
the value of 3.0 that applies to the Gaussian (Fig. 2.5). Of these three features, one is
shared by the log-logistic distribution, for which t,,,/p > 1 at small values of o/p.

e The Weibull distribution is also unique in that its skewness remains non-zero as
o/u — 0 (Fig. 2.5¢).

* As o/p— 0, the kurtosis of most distributions approaches 3.0, the value for the
Gaussian distribution. The Weibull and log-logistic distributions are the two ex-
ceptions to this behaviour (Fig. 2.5d). The log-logistic distribution does not have a
kurtosis as small as 3.0 for any values of its parameters.

¢ The log-logistic and inverted gamma distributions have markedly higher skewness
and kurtosis values for a given value of o/p than the other distributions. The only
exception to this statement is the B’ distribution, for which the skewness can be
chosen over a wide range as desired. The resulting values of kurtosis for the p’ dis-
tribution also span a wide range.

2.3.2 Limits on Ranges of Coefficients of Variation

A significant outcome of the discussion in §2.2 is the identification of limits on the ac-
cessible values of coefficients of variation 6/p. These limits all bear on the question of
which distributions are applicable to a given application. Because of their importance,
the results are collected in Table 2.5.

Table 2.5: Accessible ranges of coefficients of variation for the distributions considered in §2.2.

Distribution range of s = o/p
inverse Gaussian no limit
Gaussian no limit
exponential s=1
log-normal no limit
gamma s<1
bi-exponential 1/\2< s<1
Weibull 5<1
log-logistic no limit
log-logistic, finite skewness 5 <0.8087
log-logistic, finite kurtosis 5<0.5227
inverted gamma no limit
inv. gamma, finite skewness  s<1

inv. gamma, finite kurtosis s<1/\2
beta-prime no limit
beta-prime, finite skewness s<1/\3
beta-prime, finite kurtosis s<1 / \2

15
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2.3.3 Fifth and Higher Moments

A recent study examined the effect of varying the distribution of service times in the
application of queueing theory to the modelling of maritime interception operations
[2]. In the course of this study, it was observed that the exponential distribution gives
results noticeably different from the other distributions studied, which included the
inverse Gaussian, log-normal and gamma distributions, among others. One may seek
an explanation for this in the behaviour of the higher moments. The distributions
concerned are the inverse Gaussian and log-normal, since these were the only two
included in Ref. 2 that can have ¢ = p, a property characteristic of the exponential
distribution. The values of skewness and kurtosis of the three distributions (Table 2.1,
p- 6; Figs 2.5¢,d) are not different enough to explain the effects observed in Ref. 2, so it
is interesting to look at yet higher moments. It turns out that general expressions for
these are available or can be readily derived.

The quantities of interest are the rth moments p, about the mean and the rth
moment ratios 1,:

b= -0 fdt, m=p/o, (239)

the second being the natural generalisation of skewness and kurtosis. These quantities
can be readily evaluated for the exponential distribution, giving
r-2
o= Y FH(E)  029), (240)
k=0
where

(Fi) =ﬁik): | (2.41)

is the binomial symbol.
For the log-normal distribution, Johnson ef al. [10(§14.3)] give a formula the rth
moment about the mean. Setting ¢ = p in this expression, one finds

2
Nin = 2 (-DF (;) 2R —k=1/2 (4> 3), (2.42)
k=0

For the inverse Gaussian distribution, Evans et al. [12] give an expression for the
rth moment about the origin. This can be converted to the rth moment about the mean
by a standard transformation [12]. Once again setting ¢ = 1, one obtains

r—2 r—k-1
a1, k[T (r=k+I1-1)!
i =17 (r 1)+1<Z=:{}( 1) (k) z:Es PEPEETIT (r=3). (2.43)

These three quantities are compared in Figure 2.6 up to r = 10. The impetus for
this comparison was a study in which use of the exponential distribution gave results
significantly different from the other two [2]. However, if one distribution can be said
to behave differently from the others in Figure 2.6, it is the log-normal rather than the
exponential. Clearly, the explanation of the observed effect must be sought elsewhere.
One possibility concerns modes (Fig. 2.5a): the mode of the exponential distribution is
at ¢ = 0; for the other two it lies at 0.303 p and 0.354 p (inverse Gaussian and log-normal
respectively with o = p). Another possibility is the decision rates, discussed in the next
Section.
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Figure 2.6: Values of the rth moment ratios |, of the exponential distribution and the inverse
Guaussian and log-normal distributions with ¢ = p. Note the logarithmic scale on the ordinate.
The points at r = 3 and r = 4 are the skewness and kurtosis respectively. The lines are intended
solely as guides to the eye.

2.3.4 Decision Rate

In the context of distributions of decision times, the decision rate h(t) is the probability
density of a decision occurring at time ¢ on the condition that a decision has not occur-
red at times earlier than t. That is, it is given by

f(t)
h(t)= 244
0=k @a)
where F(t) is the cumulative probability corresponding to the probability density f{t): (¢)
t r !
F(t)= jo f(tdr'. (2.45)

The quantity defined in Equation (2.44) has also been termed ‘hazard rate’ [3,12,13,17],
“failure rate’ [12,17-19] and “force of mortality’ [12,13]. It is widely used as a means of
classifying distributions (e.g. [10(§33.2),19]).

Many of the probability distributions considered here have surprisingly simple
expressions for their decision rate, albeit in terms of a variety of special functions. The
inverse Gaussian is not one suchy; its decision rate is [18]

hiG(t)= fIG(? ,
O v(1-t/m)J/t ]-€*" ®[~v(1+1/u) /]

where ®(f) is the camulative probability of the Gaussian distribution with mean of zero
and unit standard deviation.

The expressions for the decision rate, simple or otherwise, are collected in Table
2.1 (pp. 6-7). The point leading to an argument for using the inverse Gaussian distribu-
tion to modelling decision speed concerns the behaviour of h(t) over its domain and
particularly as t — . Surveying the various distributions, we see that:

(2.46)

() The lower limit of the integral must be taken as - o for two-sided distributions such as the
Gaussian.

17
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¢ The exponential distribution has a constant decision rate equal to 1/p.

e All distributions other than the exponential and Gaussian have h(0) = 0.()

o The Weibull distribution with § > 1 (the case of interest in this Report) and B’ distri-
bution have monotonically increasing decision rates with no upper limit.

o The bi-exponential distribution and gamma distribution with r > 1 also have mono-
tonically rising decision rates, but they asymptote ast > o to hy, , = and by =8 =
/o2

Except for the property h(0) = 0, none of this behaviour seems realistic in a model of

decision rate. As the following dot points explain, it is likely that real-life decision rates

rise from zero at t = 0 to a maximum value and then decrease to a non-zero value as

f—> o0

o The rate should be low initially while the decision maker assesses the situation.

¢ It would then rise as the decision-maker’s situation awareness increases and recog-
nition-primed decisions [1] are made.

 This would be followed by a decline as the ‘easy’ decisions are taken, leaving the
more difficult ones to be dealt with.

s However, the decision rate ought not to decline to zero; while ever a decision re-
mains to be made, one expects a non-zero probability that it will be made.

Of the distributions in Table 2.1, only the inverse Gaussian distribution has a decision

rate that rises from zero, peaks and then declines to a non-zero value as  — co. That is,

only the inverse Gaussian distribution fulfils all of the requirements. This is somewhat

remarkable, in view of the diversity of distributions compiled in Table 2.1.

Figure 2.7 shows the time dependence of the decision rate for three distributions
with o = p, being the three distributions discussed in the previous Section. Decision
rate provides another aspect that distinguishes the exponential distribution from the
other two.

S\ SXRONENERL s .
g . .
= inverse Gaussian |

oL N —

i - N —

\ —— i
log-normal —— ]

g i : i ] 1 i L]

0 10 20 30
tu

Figure 2.7: Time dependence of decision rates h(t) for three distributions with ¢ = . To exploit
scaling behaviour, ph(t) is plotted against t/u. The product ph(t) for the log-normal distribu-
tion asymptotes to zero as t — oo; that of the inverse Gaussian distribution asymptotes to 0.5 (in
the case ¢ = p).

® For the gamma and Weibull distributions, this is true only for parameter values of interest in
this report, i.e. those giving s <1. (When s = 1, both distributions degenerate to the exponen-
tial distribution and, for s > 1, both start at h(0) =  and fall monotonically as  — ».)



DSTO-TR-1596

3. Finite-Domain Distributions

The initial interest in distributions on a finite domain arose from considerations of mo-
delling decision soundness, since soundness scales typically are finite. If the scale is
continuous, the B distribution is useful because of the wide range of distribution shape
available. Often, soundness scales are discrete (‘Likert scales’), so there is interest in
discrete probability distributions from that point of view. Both these topics are discuss-
ed in this Section, but first the following observation is addressed.

Table 2.1 and Figure 2.5(c) show that the Gaussian distribution has a kurtosis of
3, independent of the value chosen for the standard deviation, and that almost all other
distributions have larger kurtosis. The sole exception is the Weibull distribution for a
limited range of values of B, and even there the minimum value available is ~2.71, not
much less than 3. In the interests of exploring a wide range of behaviour, it may be use-
ful on some occasions to use distributions with markedly lower kurtosis than that of
the Gaussian, even if their other properties make them unlikely candidates for, say, a
realistic description of decision times.

3.1 Simple Low-Kurtosis Continuous Distributions

This Section presents properties of three simple distributions, two of which clearly
have rather lower kurtosis that the Gaussian distribution. Their definitions are given
below and their properties are collected in Table 3.1.

3.1.1 Impulse Distribution

The impulse or deterministic distribution has a single parameter, its mean p, and is
defined by

fi)=8(t-p), @1
where §(x) is the impulse symbol, also known as the Dirac delta function. The effect of
Equation (3.1) is that p is the only possible value for ¢; the probability of obtaining any

other value is strictly zero. The corresponding cumulative probability (Eqn (2.45)) is
the unit step function located at ¢ = p.

Table 3.1: Properties of three simple probability density functions with finite domain.

Impulse Uniform Triangular
Range of s = o/u 5=0 s<1/43 5<1/\8 to1/+2*
Mode ¢, n none tm
Skewness 15 0 0 Eqn (3.7)
Kurtosis 1, undefined 9/5 12/5
z(t;“) (a<t<ty)
1 (b—a)ty, —t°+2at—ab
Decisior:}: (¢ - 1) P (a<t<b) )
rate h(t) o (otherwise) =7 (tm St<Dh)
0 (otherwise)
* Depending on 3, see §3.1.3. 1t See §3.1.1. tSee §2.34.
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It may seem that this distribution has the smallest possible kurtosis, namely zero,
since all moments about the mean are zero. However, the kurtosis is defined as the
ratio of two such moments, the fourth to the square of the second, and it turns out that
the result is strictly undefined. To see this, consider the common method of introduc-
ing the impulse symbol using a limiting sequence of appropriate functions [e.g. 20(ch.
5)]. Choosing a sequence of rectangles gives a kurtosis of 9/5; a sequence of triangles
gives a value of 12/5; one of Gaussians gives 3, etc. Since all these sequences are held
to represent exactly the same object, the impulse symbol, it follows that its kurtosis is
not a well-defined quantity.(8) Nevertheless, there is no doubt that the impulse distri-
bution represents an extreme of behaviour among probability density functions, and
this in itself makes it useful in some circumstances.

3.1.2 Uniform distribution

The uniform distribution, perhaps the simplest of all distributions, has a kurtosis of just
9/5, the lowest encountered in this work among the continuous distributions.}t) The
probability density is

1

——  (a<t<h)
fu(B)={b-a | (32)
0 (otherwise)
where we require a > 0 to ensure that f,,(0) = 0. The mean and standard deviation are
a+b b-a
_— = 3.3
=7 M e
Rewritten using o, p as parameters, Equation (3.2) is
1
—= —o/3<t<p+ovV3
fu(t)=4203 N +os3) (3.4)

0 (otherwise).

Hence, the requirement a > 0 places a limitation on the values of s = 6/ that can be ob-
tained: s < 1/43. The uniform distribution does not have a mode —it has no peak. Other
properties are listed in Table 3.1.

3.1.3 Triangular Distribution

The triangular distribution has probability density that is zero for t < a, rises linearly
from f = a to the mode t,,, falls linearly from ¢ = £, to zero at f =b and is zero thereafter:

2(t-a)
G-
fe)=__2(-a) (3.5)
O ™
0 (otherwise),

(8) The skewness of the impulse distribution is well defined. All valid limiting sequences must
be sequences of functions that are symmetric about p, and hence all agree that the skewness
is zero.

(t) Only the discrete uniform (§3.3.1) and B-binomial distributions (§§3.3.4 and 3.3.5) have lower
accessible kurtosis values.
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where a > 0 to keep f,(0) = 0. Equation (3.5) is a generalisation of the frequently antho-
logised symmetric triangular distribution, which is obtained by setting ¢, = (a + b)/2.
The mean and standard deviation of the general distribution are listed in tabulations
[7,12], but the higher moments seem not to have been previously published. The mean
and variance are

a+ty, +b 2 a2+tm2+b2——atm—ab—btm
=0, = . 3.6
Kt 3 Ot 18 (3-6)
Straightforward, though lengthy, calculation gives the skewness as
3 2(u3 + tm3 +b° ) —S(uztm + utm2 +a*b+ab® + bztm + btmz) +12abt,, (3.7)

2706°

The kurtosis is 1y = 12/5 regardless of the parameter values. The 1y, value is well known
for the symmetric triangular distribution, but it does not seem to have been previously
recognised that it applies in general.() It is a most remarkable result. It means that the
skewness can be varied while holding mean, standard deviation and kurtosis constant,
despite the fact that the triangular distribution has just three parameters. This property
seems to be unique among probability distributions. It recently proved useful in a
study of the effect on a queueing system of varying service-time distributions [2].

The inversion of Equations (3.6) and (3.7) is algebraically challenging, but was
performed with the aid of a computer algebra package. The result is

a=p —ct«/icosi-—ct\/gsiné‘,,
tm =M —0¢V2 cosE + o6 sinE, (3.8)
b=p,; +20t\/§cos§,

where the auxiliary angle § is given by

{82515,
Smage

To evaluate Equation (3.9) appropriately, the result of the arctan function must be
taken in the range [0,n], which is not the usual range assumed by calculators and
software routines. That is, ng; = 0 corresponds to § = /6 and negative values of 1z,
correspond to 1/6 < £ <m/3.

In the course of the derivation of Equations (3.8) and (3.9), one finds that the
available range of skewness values is limited to

V8

LETES = (3.10)

unlike the case of the B' distribution, negative skewness is accessible. The limits cor-
re\sFond to the ‘sawtooth distributions”: ng, = —/8/5 (§ = n/3) when t_ = b and N3t =
+V8 /5 (€ = 0) when t, = a. The first line of Equation (3.8) implies a limit on the value
of o from the requirement thata > 0:

&= %arctan (3.9)

@ Johnson et al. [10(§26.9)] quote a formula for general moments about t,. Ayyangar [21] gives
an expression for moments about the mean in terms of moments about ¢, but evaluates it
for the symmetric distribution only.
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s =St o cosec(&+ m/6)
t— = J_ -
Mt 8

That is, the value of the limit depends on the chosen skewness: the limit is quite low for
maximum negative skewness (s; < 3/[\{8 when ng; = —\fé/S) and rises as ng; is increas-
ed, reaching s, <1/v2 when g, = +v/8/5.

(3.11)

3.2 The General Beta Distribution

The general B distribution is a very general finite-domain continuous distribution.
Having four parameters, a wide range of curve shapes is encompassed. Its standard

form is [10(ch.25)]
Linl i k) U PO
fo()=1B(p.q)(b-a)*77! S (312)
0 (otherwise),

where B(p,q) is the beta function (Eqn (2.30)) and p, § must both be positive. We consi-
der only those distributions that are finite at both end points, which impliesp>1,g42>1.
In addition, we require a > 0, as usual. The case p =1, 4 =1 is exactly the uniform distri-
bution on [a,b], and the cases p =1, g =2 and p = 2, ¢ =1 are the two sawtooth distribu-
tions mentioned in §3.1.3. Obviously, the kurtosis of the B distribution is low for at
least part of its parameter space.

The properties of the B distribution are well known [10(ch.25),13(ch.14)]. The
mean p and variance o2 are

_ 2
Gl o2 (b;) P (3.13)
P+aq (p+q) (p+q+1) |
the skewness 13 and kurtosis 14 are

_2(q-p) 1P+e+1!

_ 3(p+6;+1)[2(§f—@)2 +P@(P+‘?+2)]

n3 N4 ;o (314)
p+q+2\ g pa(p+q+2)(p+q+3)
and, for the case p > 1, g > 1, the mode £, is
fm =g+w_ (3'15)

p+q-2

Following the theme of this Report, we wish to invert Equations (3.13) and (3.14) to ob-
tain expressions for 4, b, p, g in terms of y, 6, ng, Ny. Of the distributions included in
this Report,() the B distribution is the only one where such expressions() have been
found elsewhere [10(§25.4)})]. In terms of the auxiliary variables

() See also footnote (b) (p. 11).

) As Johnson et al. note [10(§25.4)], sometimes values of g, b are set by external considerations
and the requirement is to choose p, g to give desired values of y, . This is a relatively simple
problem, the solution to which is

29—3}-(11—“){3?—@_1}

b—g,, o2

’ : q:b—nf{p—ﬂ}(b—u}_l]_

E‘_“L o?
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I T]42— ng* -1 , R (r+2)n3 , (3.16)
3n3° —2n4 +6 Jr+22 32 +16(r +1)
the expressions for p, g are
p=r(1-R)/2, g=r(1+R)/2. (3.17)
A third auxiliary variable facilitates expressions for a, b:
A=%\/(r+2)2n4+16(r+1); a=u—%§l, b=A+a (3.18)

What is missing from the discussion of Ref. 10 is a description of the accessible
range of skewness, kurtosis and coefficient-of-variation values. This turns out to be a
complicated problem, with many factors potentially contributing to the boundaries of
the accessible parameter space. For example, both A and R must be real, which means
that ng, ny are limited to values for which the square-root functions have non-negative
arguments. Other requirements are p > 1 and g > 1. Figure 3.1 shows an accessible area
in m3-my4 space. The upper boundary is part of the line of singularity of 7; the lower
boundary comes from the condition that p > 1 and g > 1. That is, the solid line in Figure
3.1is given by

ng=3+3n5%/2, (3.19)
the condition for which the denominator of 7 is zero. The requirements p >1 and g > 1
generate a cubic form in 132 and n4. Treated as an equation in g4, this has three real
roots, the largest of which for any given 132 value is shown as the broken line in Figure
3.1. The equation of this line is

60+ 541> ~3n5* /8
50 —n32

N4 = Mcosp+ M3 sing+ , (3.20)

where

32n (ng* - 50) _
2000 - 360m;2 +n3*

1 V(g2 +100) (2 + 4)°
- 8[50 -n3?|

(3.21)

= l arctan
’ P 3

Figure 3.1: An area of accessible values of 3 and 14 for the general B distribution, shown as the
region between the two lines. It is conjectured that this is the only such area.
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Although not proven, it is conjectured on the basis of algebraic analysis and some trial-
and-error evaluations that the region between the lines in Figure 3.1 is the only area of
accessible 13 and n4 values for the general B distribution. The highest values are |nz|=
2, 1y = 9, like the exponential distribution. The lowest kurtosis accessible is ng = 9/5,
which can only be achieved when 13 = 0; in other words, this is exactly the uniform
distribution.

The question of the range of o/p values accessible has not been explored, but
it can be expected that the condition a > 0 places an upper limit on o/, the value of
which is a function of 113 and 1.

3.3 Discrete Probability Distributions

The use of a discrete-valued scale of measurement is common in the surveys used to
gather data on decision soundness in specific situations. Hence, there is interest in dis-
crete probability distributions for modelling decision soundness. Because the scales
used often have few levels, for example 0-5 or 1-7, there is no necessity to employ a
formula-based distribution: it would be feasible to regard a scale with n + 1 levels as
having n parameters—namely the probabilities of obtaining each of n of the levels in
any given trial —subject only to the restriction that the sum of the probabilities for all
n + 1 levels must be unity. However, the degree of freedom entailed by this approach
can be uncomfortably large, giving rise to a desire for a distribution with a small num-
ber of parameters. There is evidently no theoretical basis for choosing any particular
probability distribution for the purpose of modelling decision soundness, so this Sec-
tion compares the properties of several discrete probability distributions.

At first sight, there seem to be few candidates; most references list just three
discrete distributions with finite domain: the uniform, binomial and hypergeometric.
More comprehensive texts [6,12,22,23] mention a fourth, the B-binomial distribution,
which is not, in fact, independent of the other three. It is unsurprising to learn that
there are many more, but these are treated only in journals, specialised texts (e.g. [24])
and the most comprehensive compilations on discrete distributions [25,26]. Since these
other distributions are less known, only the four distributions named above are treated
here in any detail. Of these, the uniform distribution is of little interest, as explained in
§3.3.1. The main properties of the other three are collected in Table 3.2.

Section 3.3.6 lists a few properties of some of the lesser known distributions, pri-
marily as a cursory indication of the range of distributions that have been studied. For
many of these, our program of expressing parameters in terms of moments cannot be
carried through because either there are no closed-form expressions for the moments,
or the expressions that exist are algebraically intractable.

3.3.1 Discrete Uniform Distribution
The discrete uniform distribution is®)

1
Pdu (f) =m (G <t R). (3.22}

Often, n is determined by external factors, such as the nature of the particular Likert
scale used; in these cases, this distribution can be regarded as having no parameters.

() The lower limit of the domain is taken as zero rather than the more usual value of unity in
the interests of compatibility with the other discrete distributions treated herein.
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Table 3.2: Properties of three discrete probability density functions defined on 0 <t <n.

Binomial Hypergeometric Beta binomial
nM na
Mean n na —I—\f_ _u-l-_b
(n+1)(M+l)J [(n+1)(a—l)J
* —————— L -
Mode ¢ [(n+1)q] [ N2 | b2
Vari ) 1 nM(N-n)(N-M) nab(a+b+n)
ariance o*  na(l-a) NZ(N-1) (@+b)? (a+b+1)
Skewness 1-2a (N-2n)(N-2M) (b—a)(a+b+2n)
N3 op N(N-2)oy, (a+b)(a+b+2)opy
N(N+1)—6n(N—n)+ a2—4ab+b2—u—b+3pb(u+b+n)
1 6 (N —2)(N -3)oy,° (a+b+2)(a+b+3)cp >
Kurtosisn, 3+—5-—
Op M 3(N-1)(N+6)  6M(N-M) 6(a+b+1)(a ~ab+b?)

N-DN-3)  N-2N-30r> " p(arbr2)(a+b+3)

*|x| = largest integer < x. If x is exactly integral, then there are two equal maximum values, at|x|
and |x| - 1. If an expression exceeds 7, then the mode is at #; if less than zero, then it is at zero.

This point of view is adopted here. Hence, the distribution is of little interest in the pre-
sent context, since there is nothing to adjust. For reference, its moments are:

Mau=m/2,  oa’=n(n+2)[12, Mgy =0,  Myau=9/5-1/(504,>). (3.23)

3.3.2 Binomial Distribution

The binomial distribution has a single parameter a satisfying 0 <a < 1. The distribution,
defined for integer ¢ in the range [0,n], is

Po(t) = (Ttl) at (1-a)", (3.24)

where the first bracketed factor on the right-hand side is the binomial symbol (Eqn
(2.41), p. 16). As Table 3.2 indicates, the parameter a equals py/#n. This leads to simple
expressions for variance, skewness and kurtosis in terms of the mean; values are
shown in Figure 3.2 for n = 10. As this Figure indicates, the full range of skewness,
positive and negative, occurs. It is interesting that the minimum value of kurtosis,
which occurs when , = /2, equals 3 - 2/, a little less than the value of 3 applying to
the Gaussian distribution.

3.3.3 Hypergeometric Distribution
The standard form of the hypergeometric distribution reads [6]

Pr(t) = (Af)(N _M)(N)ml, (3.25)

n—-t \n

where 0 < t < n. The parameters M and N must both be integers and satisfy M > n, N >
M + n. The requirement for M, N to be integers leads to a complication in the inversion
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i standard deviation

\ — — —  skewness —

y @ —————— kurtosis

0 1.0 2.0 3.0 4.0 5.0
mean
Figure 3.2: Standard deviation, skewness and kurtosis of the binomial distribution as functions
of the mean for n = 10. Only the left half of the domain is shown; the standard deviation and
kurtosis are symmetric about w, = 5, the skewness antisymmetric.

of the expressions for p, o. The expressions (Table 3.2) can be readily inverted if N, M
are treated as real numbers, called N, M in the following equations:

Y2 a2
N=q 2=1) 02’ M=p p(n-u) 62 (3.26)
pu(n—p)-no p(n—p)-no

To complete the inversion, N, M must be converted to integers to obtain N, M respec-
tively, but it is not clear how to formulate a rule for rounding that will lead to pand o
values as close as possible to the desired values. Presumably each instance should be
treated on its merits, using trial and error.

The question of the accessible ranges of p, ¢ turns out to reveal an aspect of the
connection between this, the binomial and the B-binomial distributions. Hence, it is
deferred to §3.3.5, where the accessible ranges of skewness and kurtosis for the hyper-
geometric and p-binomial distributions are also determined.

3.34 Beta-Binomial Distribution
The B-binomial distribution is [6,12(p.37)]

B b+n—
?B—b(f)=(?) (a:(&;)n b, (3.27)

where once again 0 < t < n. The parameters a4, b need not be integers but both must be
greater than zero. The function B(a,b) is the standard beta function (Eqn (2.30), p. 11),
which is a generalisation of the binomial symbol to non-integer arguments. This distri-
bution is also known as the negative or inverse hypergeometric distribution [22(pp.
155-60),23(pp.330-2),26(§6.2.2),27], a terminology that reflects the connection between
the two distributions [26(§6.2.2),27].

Inversion of the equations for mean and variance (Table 3.2) gives results rather
similar to Equation (3.26), another indication of the connections between the two distri-
butions. Here, we have
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2
_ Hmp)=c® p(n-p)-o
no? —p(n—p) no? —p(n—p)
but this time the expressions can stand as they are, since 4, b are not required to be
integers. The question of the accessible ranges of p and o is again deferred to the next

Section, which also deals with the ranges of skewness and kurtosis accessible to this
distribution.

a b=(n-p) (3-28)

3.3.5 Comparisons and Ranges of Coefficient of Variation

Figure 3.3 illustrates the three distributions of interest. This figure differs from Figure
24 in that the latter shows distributions with the same mean and standard deviation.
The distributions in Figure 3.3 all have the same mean, but different standard devia-
tions. In fact, with finite parameter values it is not possible for any of the three discrete
distributions to have simultaneously the same mean and standard deviation, as the
following argument shows. If one expresses each standard deviation ¢ in Table 3.2 in
terms of the corresponding mean p, one obtains

N-n
o om(1-), oo [1-2 TR,
2 1 Bpb Ya+b+n (3-29)
RCa i ] R P

Now n >1 in all cases and N > n for the hypergeometric distribution, so it follows that
distributions with equal means have oy, < o}, with the equality being approached as
N — . On the other hand, the B-binomial distribution shows the opposite behaviour—
Gg.p 2 Op—since 4 and b are both positive; equality is approached as one of a or b goes

T | I ] ] I ] [ I | (=
ol —
o
—~ HEEE hypergeometric §
- =77 binomial 7
- EE beta binomial
N
gol
= Tt
© -
fo]
(<
Q —
SH
° | I L
0 2 4 t 6 8 10

Figure 3.3: Discrete distributions with a maximum range of n = 10 and a mean of u = 7.5. The
standard deviation of the binomial distribution is fixed by the mean and range to be V1.875 =
1.369. The standard deviations of the other two distributions were chosen as o), = 1.20 and OBy
= 1.50. (See text for discussion of these o values.)
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to infinity. In summary, distributions with equal means have their standard deviations
ordered as o}, < 6, < 6 p, with strict inequalities for finite parameter values. Hence, the
three discrete distributions are not alternatives in the sense that the various continuous
distributions are; which is chosen depends on the mean and standard deviation that
one wishes to model.

The other restrictions on the parameters lead to limits on the standard deviations
attainable with the hypergeometric and B-binomial distributions that mirror those
given above. In the case of the hypergeometric distribution, N has a lower limit deter-
mined by the values of py, and n. This gives a lower limit on the standard deviation:

__"7Bh (up <1/2)

uh (n? b )
Oh 2 Up X (3.30)

n.—
——th Hh (un 21/2).
n —?I+f.£h

For the B-binomial distribution, the parameter b can be regarded as determined by the
values of 4, pgj, and n. The lower limit on a (2 2 0) then places an upper limit on the

standard deviation:
Op-b <Hp-b /g1 (3.31)

The various limits on the standard deviations are depicted as a function of the mean in
Figure 3.4 for the case of n = 10. In view of the relatively wide range of standard devia-
tion accessible to the B-binomial distribution, it deserves to be better known. It should
be noted that, although the region accessible to the hypergeometric distribution is
shown as a structureless area in Figure 3.4 (the area with darker shading), in fact it con-
sists of a lattice of isolated points, owing to the requirement that the parameters N, M

e
c T
kel
k<]
> . .
3 beta-binomial
T s hypergeometric
32 binomial
o ™
5
0w

0 20 4.0 6.0 8.0 10.0
mean

Figure 3.4: Relationship between standard deviation and mean for the three discrete distribu-
tions with n = 10. The heavy line shows the dependence of standard deviation on mean for the
binomial distribution; the shaded areas show the accessible values for the other distributions.
The accessible region for the hypergeometric distribution is actually a lattice of isolated points,
since the parameters of that distribution must be integers; the density of the lattice increases
toward the heavy line.
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be integers. Since N — « corresponds to approaching the heavy line in Figure 3.4 from
below, the lattice of points increases in density toward the heavy line.

All three distributions have positive skewness if p < /2, zero skewness when p =
/2 and negative otherwise, as expected. The behaviour of the skewness and kurtosis
of the binomial distribution is shown in Figure 3.2. Corresponding plots for the other
two distributions are more complicated because their skewness and kurtosis do not
depend on the coefficient of variation 6/ alone. That is, 13 and 14 for the hypergeo-
metric and B-binomial distributions are functions of two variables with domains of
definition shown as the shaded areas in Figure 3.4. The B-binomial distribution is con-
sidered first, since it has a well defined parameter inversion (Eqn (3.28)).

Figure 3.5 shows contour plots of skewness and kurtosis for the B-binomial distri-
bution. The broken lines in this Figure outline the domain of definition, which is the
lighter-shaded area in Figure 3.4. Only the left half of the domain is shown; skewness is
antisymmetric about p = n/2 and kurtosis is symmetric. As Figure 3.5 indicates, both
skewness and kurtosis increase without limit as pgy, — 0. In terms of distribution para-
meters, this corresponds to a — 0. The skewness is zero when pg 1, = n/2, that is, when
b = a. The smallest kurtosis value also lies on this line and at the top of the domain of
definition, which corresponds to the parameters 2 — 0, b — 0. The value of this mini-
mum is 1.0, the smallest encountered in this work for any distribution, whether contin-
uous or discrete, finite or infinite. In fact, as one traces the line Ppp =1 /2 from bottom
(a = x) to top (a = 0), the kurtosis falls from the binomial-distribution value of 3 - n/2
(= 2.8 for n = 10) to unity. That is, low kurtosis is found along the entire line given by
Hpp = /2 and there is a region at the top of the domain of definition where the kurto-
sis is smaller than the value of 1.2 applying to the uniform distribution.

Figure 3.6 shows corresponding results for the hypergeometric distribution. This
Figure was prepared using Equations (3.26) and taking N = N, M = M, that is, ignoring
the discretisation of the domain. As with the B-binomial distribution, the skewness of
the hypergeometric distribution is zero on the line p;, = n/2 and rises without limit as
pp — 0. The inset indicates this rather schematically. (In terms of parameters, p;, — 0
corresponds to N — o.) The kurtosis also rises without limit as py, — 0. On the line p, =

[ T T
(b) kurtosis

50 [ |
(a) skewness
4.0
3.0

2.0

standard deviation

1.0

4.0 5.0 0 1.0 2.0 3.0 4.0 5.0
mean

Figure 3.5: Contours of constant (a) skewness and (b) kurtosis for the B-binomial distribution
with n = 10. The broken lines delineate the domain of definition, which is the same as the lighter
shaded area in Figure 3.4. Only the left half of the domain is shown; the skewness is antisym-
metric about pg 3, = 5, the kurtosis symmetric.
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Figure 3.6: As in Figure 3.5, but for the hypergeometric distribution. In this case, the domain of
definition is the darker shaded area in Figure 3.4. The inset in each panel shows detail near the
origin. Because the upper and lower domain boundaries are so close to each other in this region,
contours are not discernable in the insets; they lie near to the numbers.

n/2 {corresponding to N = 2M), the kurtosis is a minimum at the top of the domain,
equalling the value for the binomial distribution (i.e. 3 - n/2 or 2.80 for n = 10). The
kurtosis rises slowly as one moves down along the line pj, =n/2.

33.6 Less Well Known Distributions

This Section briefly describes several other discrete distributions with a finite domain
[0,1]. The study of some of these has a long history, but they nevertheless do not ap-
pear in most compilations of distributions. The purpose of this Section is to promote
awareness of the distributions. The expression of their parameters in terms of their
moments is carried through only where it is simple.

(a) Distributions with Zero Parameters

As explained in §3.3.1, frequently the range n of the distribution domain is set by exter-
nal considerations; it is not available for variation. Hence, distributions with n as the
only variable other than the argument are considered in this Report to have no parame-
ters. Lest it be thought that the discrete uniform distribution is the only one such, three
others are described here.

The “classical matching distribution’ is of some antiquity. It is the answer to the
following question: n entities are numbered consecutively 1,...,n and are then rearrang-
ed at random. What is the probability that ¢t of them will have a position in the random
sequence that matches their number? The result is [25(p.87),26(p.409)]()

Pem(®)=7; 2( 1}f O<t<n). (3:32)
}—{}

The moments of this distribution are: p =1, 6 =1, 3 =1, ng = 4. This distribution is the
finite-domain equivalent of the Poisson distribution, in the sense that the first n factori-
al moments of the two distributions are equal [26(p.410)].

(m) The equation in Ref. 26 (Eqn 10.19) contains a misprint in the lower limit of the sum.
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Figure 3.7 shows the classical matching distribution with n = 10 (left-most bar in
each group). The values of p.,(0) and p.,(1) are almost equal, after which p,,,, values
fall rapidly with increasing ¢, as the inset indicates. The last values are p (1 - 1) = 0
and p.,(n) =1/nl.

Naor’s distribution [26(p.447)] belongs to a type known as “urn models’ [24]. It
gives the probability that ¢ attempts are required to draw a red ball from a urn that ini-
tially contains one red ball and n - 1 white balls, under the condition that, every time a
white ball is drawn, it is replaced with a red ball. Clearly, this sort of problem admits
almost endless variation. As described above, the domain of Naor’s distributionis 1 < ¢
< n. A straightforward change of variable gives

nl(t+1)
(n—-t)!(n+1)H!

Despite its simple form, there are apparently no known closed-form expressions for the
moments of this distribution. Figure 3.7 shows the distribution with n = 10 (right-most
bar in each group). The distribution rises to a maximum at 7 = 2 and then falls, slowly
at first. The last value is py(n) = n!/(n + 1)

A more bizarre example of a parameterless distribution is ‘Haight’s harmonic
distribution’, which is [26(p.470)]

1 27 27
= —_— — <t<L —
Pem (1) 22&2t+1J [2t+3D (0<t<[Z-1/2]), (3:349)
where 27 is a positive integer and | x| is the largest integer less than or equal to x. There
does not seem to be any particular application behind the definition of this distribu-
tion. It has the property that, for large Z values, pyy,(#) is zero for considerable ranges
of £, with isolated nonzero values. Figure 3.7 shows something of this behaviour (mid-
dle bars of each group), although n = 10 is not large enough for it to be fully developed.
Expressions for the mean and standard deviation of this distribution are available [26

(pp-470-1)].

rn(t) = 0<t<n) (3.33)

0.6

mm classical matching

A Haight harmonic, Z =21/2
EEEE Haight harmonic, Z = 11
Naor

0.4

probability

0.2

Figure 3.7: Four parameterless distributions with n = 10. The inset shows detail of the classical
matching distribution for 6 <t <10. See text for further comments.
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It is not quite right to describe Haight's harmonic distribution as parameterless: if
one wishes an upper limit of n, then Z =n + % and Z = n + 1 are both possibilities and
give different distributions, as Figure 3.7 shows. (In this case—n = 10—the most pro-
nounced difference is that pyy,(4) = 0 for Z = 11, but py,(5) = 0 for Z = 21/2.) In this
sense, a parameter variation, albeit highly restricted, can be performed.

(b) One-Parameter Distributions
The ‘riff-shuffle distribution’ is related to a problem in combining two packs of cards.
Its definition is [26(p.234)]®)

Prs(f)= (” N "‘)[ a(1-a) +at (1-a)" ] (0<t<n), (3.35)

where 0 < a < 1. This distribution is related to the negative binomial distribution. It is
symmetric about 4 = 0.5 and tends to §;gasa — Oorasa — L (0) Expressions for the
moments are available in terms of mcompiete B functions [28]. Examples of the distri-
bution for n =10 are shown in Figure 3.8.

Dandekar introduced several distributions related to the binomial and Poisson
distributions, in which the probability of a success in a trial is set to zero for a specified
number of trials following a successful trial. His first modified Poisson distribution has
one parameter only [25(p.25),26(p.435)]:

t o (1-t/v)
Ppyp(t) = *HY) Zw— (O<t<|v]), (3.36)
= I
where A and v are both greater than zero and | x| is the largest integer less than or equal

to x. To have any members in the distribution, v > 1. As with Haight's harmonic distri-
bution, some variation of v is available once the maximum range n has been chosen:

T 1 T T 1T T T 1T T T]
N ;=01 =011
0 a=0.2, u=0250_|
. ;=03 1=0420

n ZZ21 g= 0.5, u=0.664 _

0.3

probability
]

1

GOSN NS0

N7

o
L)

0 2 4 4 6 8

Figure 3.8: Examples of the riff-shuffle distribution for n = 10. Calculated values of the mean
are shown in the legend. The distribution tends to 5, yasa — Qora— 1.

(1) The distribution is mcerfecﬂy stated by Johnson et al. [26(Eqn 5.92)], see Ref. 28.
(©) 8,5 is the ‘Kronecker delta”: §,, , =1 if m = n and zero otherwise.
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n<v<n+1, although in this case, the effect of varying v over this range is relatively
minor. As A — 0, the distribution degenerates to . It seems that no simple expres-
sions for the moments are known.

Note that Equation (3.36) gives the cumulative probability distribution. The usual
probability distribution can be calculated by taking successive differences. Figure 3.9
shows some cases for v = 10.0. On the basis of this cursory numerical inspection, it
appears that the distribution approaches §, , as A — .

The Bose-Einstein distribution comes from quantum statistical mechanics. Of the
three state-occupancy distributions of statistical mechanics, it is the only one relevant
here; the Maxwell-Boltzmann distribution is equivalent to the binomial distribution
and the Fermi-Dirac distribution is defined for 0 < #<1 only. All three distributions are
examples of urn models. Using notation consistent with that adopted in this Report,
the Bose-Einstein distribution of state occupancies can be written [24(p.112),26(p.421)]

(N-Dnl(n+N—-t-2)!
(n+N-Dl(n-t)!

PB-E(f) = (0<t<n), (3.37)
where N > 2 and is integral. This is one case where expressions for the mean and vari-
ance are simple. That for the mean, p = n/N, gives an expression for N, which leads to
the variance as

o2 < Pm-w(p+1)

3.38
. (3:38)

In statistical mechanics, 7 is the number of particles and N the number of states,
both of which are always very large in physics applications, but the distribution is per-
ectly well defined for small values also. Figure 3.10 shows four examples with n = 10.

The Bose-Einstein distribution becomes the discrete uniform distribution when
N =2;as N — o, it degenerates to 8t,0-

0.4

©

o
> B ). - 1.0; 1 =0.083
a @ A=2.0;n=0.153
3 B ) =5.0; 1= 0.308
o.

7 A =20; p=0626

0.1

0 2 4 6 8 10

Figure 3.9: Examples of Dandekar’s first modified Poisson distribution with v = 10. Calculated

values of the mean are shown in the legend. The distribution tends to & g as A — 0 and 8, 14 as
A— o
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0.6

probability
0.4

0.2

0 2 4 6 8 10

Figure 3.10: Examples of the Bose-Einstein distribution for n = 10. The distribution equals the
discrete uniform distribution when N = 2 and tends to 8; gas N — co.

(c) Distributions with Two or More Parameters
The Laplace-Haag matching distribution is a two-parameter generalisation of the clas-
sical matching distribution [26(p.410)]:

nt = (—I}f(N $— })s J
N’ﬁg ](ﬁ t— ])1 (OSfﬁﬁ), (3.39)

pLu®)=

where 2 > 0 and N = max(n, na). In the original Laplace version of the distribution, a is
integral and N = na. However, the distribution is well defined for any positive g, in-
cludinga <1.

A general expression for the factorial moments of the Laplace-Haag distribution
is known [26(p.410)]. This leads to expressions for the mean and variance that can be
readily inverted:

H(!iz +0% - u)

£
no? +p? —np

a= N=na/u. (3.40)

The condition N > na on parameter N means that p <1, regardless of the value of .
The “binomial distribution of order ¥ is an example of a class of distributions that
has been much studied in the last two decades. It is [26(p.431)]

Pok () =p" ZZ Z(xlx:f :1 3"+f)(1—1)x}+m+xk ({}SfSED, (3.41)

=0 x; Xp 4

where0<p <1,
k
(;:1 R +f) B (szi:}xl)g
Xy, Xt ) k
tfH1=1xZi

is the multinomial symbol and the inner summations in Equation (3.41) run over all

(3.42)
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non-negative subscript values that satisfy

k
Dlx=n—j—kt. (3.43)
=1
This is effectively a 2-parameter distribution. Despite the complication of its definition,
relatively simple expressions for its mean and variance are known [26(p.431)], but they
cannot be readily solved in favour of p and k.

The “specified occupancy distribution’ [26(p.416)] is a two-parameter generalisa-
tion of the classical occupancy distribution:

n

_ns (DT iy
Pso(B)=77 ;m(l _E) 0<t<n), (3.44)

where b > 0 and ¢ > n are both integers. Once again, expressions for the moments are
available but they cannot be inverted in closed form.

As a final example, the “multinomial distribution’, a generalisation of the binomi-
al distribution, has as many parameters as one desires. Its definition is [25(p.104),26(p.
460)]

n CH
pm(t)zz...Z(r s )Hpjrf (0<t<ns), (3.45)
7 0,71 s s =0

L]

where the p;, each separately satisfying 0 < p;j <1, also satisfy the third condition below
and the summations run over all non-negative integers that satisfy the first and second
following conditions:

S S S
Y= Riet L=l @46
=0 j=0 j=0

As a consequence of the last condition, only s of the s + 1 values of p;j are independent,
but s itself can be considered a parameter, giving s + 1 parameters in all. The case s = 1
is the binomial distribution. Quite simple expressions for the moments are known, but
the task of inverting s + 1 equations is substantial.

4. Conclusion

This report collects, summarises and extends the knowledge of the properties of skew-
ed probability distributions, with the chief goal of providing a means of comparing
among them. The motivation for this was drawn from various studies in operational
analysis in which random variables are employed without any firm information on
their probability distributions. In this situation, it is of interest to look for sensitivity to
the distribution chosen. This can best be done by running the model with a variety of
distributions, which then raises the question of how to compare them. The work began
with the premise that a viable method for such comparison is to match distribution
moments, but this requires access to the requisite equations. Surprisingly, these are
almost completely absent from compilations of information on probability distribu-
tions. Hence, the main task addressed in this report—and addressed successfully —is
the derivation and compilation of the required equations for common skewed distri-
butions. A total of 18 distributions are treated in detail, both finite and semi-infinite,

35




DSTO-TR-159%

36

discrete and continuous. These include three non-skewed distributions, for compari-
son. An additional 11 discrete distributions are briefly mentioned.

In the process, it is noted that most distributions have a limited accessible range
of the coefficient of variation (the ratio o/p of standard deviation to mean). A signi-
ficant part of this work is the determination of these limits. The results are presented
above for each distribution; they are also collected in Table 2.5, Table 3.1 and Figure
3.4. The limits typically place limits on accessible values of the higher moments, which
are the main indicators of difference between distributions with equal mean and stan-
dard deviation.

The distributions treated in this report comprise all of the most commonly used
skewed distributions. The collected formulae and graphs should be of use to anyone
using skewed random variates who needs a common and consistent basis for compar-
ing one distribution with another.
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